N-Unsubstituted Sulfenamides by Electrophilic Amination of Mercapto Compounds

Siegfried Andreae
Berlin, Institut für Angewandte Chemie Adlershof e.V.

Received June 5th, 1996 respectively September 30th, 1996

Abstract

Potential mercapto compounds derived from electron deficient heterocycles as 2- and 4-thiouracils, pyridines and pyridine-1-oxide are aminated by the oxaziridine $\mathbf{1}$ to new sulfenamides ($\mathbf{6 , 9 , 1 1}$ and 15 or the isothiazolo-pyridine 14) which add to phenylisocyanates forming sulfenylureas (7,10,

12 and 16). Several other mercapto compounds gave disulfides. Attempts of oxidation of the sulfenamides and the sulfenylureas were unsuccessful. The methylmercapto compound 19 after amination was hydrolyzed to the sulfoxide 20.

1-Oxa-2-azaspiro[2.5]octane ("3,3-pentamethyleneoxaziridine") 1 is a widely useful $\mathrm{NH}_{2}{ }^{+}$-equivalent [1]. The systematic investigation of the synthetic potential of $\mathbf{1}$ revealed a variety of stabilizing reactions of the primary adduct 3 of (potential) mercapto compounds 2 to the oxaziridine 1 .

Scheme 1

Conventional preparations of sulfenamides by substitution [2] or via sulfenylchlorides [3] give only unsatisfying yields. The formation of the $\mathrm{S}-\mathrm{N}$-bond by elec-
trophilic amination with $\mathbf{1}$ followed by addition of the resulting sulfenamide to an isocyanate and oxydation of the sulfur function could open an alternative route to sulfonylurea derivatives:

Scheme 2

If there are no other stabilizing reactions of the primary adduct 3 (as in polyfunctional nucleophiles, e.g. acylthioureas [4] or 3-unsubstituted 2-thiouraciles [5]), the sulfenamides 4 can be obtained as stable final products. Whereas simple 2-thiouraciles give 5 a -amino$5 \mathrm{a}, 6,7,8,9,9$ a-hexahydro- $4 H$-pyrimido $[2,1-b$]benzo-thiazol-4-ones via rearrangement of the corresponding intermediate 3 [5], N^{3}-substituted 2-mercaptoquinazo-line-4-ones ("blocked" 2-thiouracils) yield the sulfenamides 6. 4-Thiouraciles are converted exclusively and in excellent yields into the sulfenamides 9 . The sulfenamides 6 and 9 add to isocyanates forming the new sulfenylureas 7 and 10. The benzoylation of 6a to 8a was demonstrated.

Scheme 3

The sulfenamides 6 and 9 were characterized by their ${ }^{13} \mathrm{C}$ NMR spectra showing a significant upfield shift of about 10 ppm for the carbon atom C 2 in comparison with the starting mercapto compounds. The mass spectra have intense molecular ion peaks and the corresponding $\mathrm{M}-16$-signal. All these aminations did not yield the corresponding disulfides of the starting mercapto compound.

However, several mercapto pyridines and benzenes under similar reaction conditions exclusively gave the known disulfides when treated with the oxaziridine 1. Some examples of these unwanted conversions are mentioned in table 1.

4-Nitrothiophenol was converted by the oxaziridine 1 to 4-(cyclohexylideneaminothio)-nitrobenzene (66\%) with only small amounts of bis(4-nitrophenyl) disulfide (10%) [1]. Therefore, we treated other acceptor substituted 2-mercaptopyridines with 1 and obtained the
sulfenamides 11 . They add to isocyanates forming the sulfenylureas 12.

	R	Y
a	3-COOMe	H
b	3-O2N-6-OMe	Cl
c	1-(O)	Cl

$$
\begin{array}{ll}
11 \mathrm{a}-\mathrm{c} & \mathrm{X}=\mathrm{S}-\mathrm{NH}_{2} \\
12 \mathrm{a}-\mathrm{c} & \mathrm{X}=\mathrm{S}-\mathrm{NHCONH}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{Y}
\end{array}
$$

Scheme 4

Reacting with the oxaziridine 1 in toluene, 2-mercaptonicotinic acid dimethylamide 13 gave only unidentified oily products. However, in the two-phase system toluene $/ 2 \mathrm{~N} \mathrm{NaOH}$ the crystalline amination/hydrolysis product 15 was obtained. On acidification it cyclizes to the isothiazolopyridine-3-ones 14 , which can be obtained also without isolation of the intermediate 15 by working up with hydrochloric acid. The addition to isocyanates proceeds without problems.

Scheme 5

Table 1 Amination experiments with disulfide formation

starting material	solvent ${ }^{\text {a }}$)	product ${ }^{\text {b }}$)	yield
2-mercaptonicotinic acid ethylester	toluene	bis(3-ethoxycarbonylpyrid-2-yl) disulfide	83% 2-mercaptonicotinic acid morpholide
2N NaOH/DMF	bis(3-carboxyl-pyridine-2-yl) disulfide dimethylformamide 1:1 solvate	37%	

[^0]Other 2-mercaptopyridines, as 2-mercaptonicotinic acid benzylamide 17a and 3-hydroxy-2-mercaptopyridine $\mathbf{1 7 b}$ obviously are aminated at the mercapto group. Via a cyclohexylidenthioxime rearrangement (details of the mechanism see [5]) and hydrolysis the cyclohexylthiopyridines $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ are formed. In DMSO-d ${ }_{6}$ they show different ${ }^{13} \mathrm{C}$ NMR spectra of the cyclohexyl part indicating different tautomeric forms.

In a curious reaction sequence 2-mercaptonicotinic acid methylester 17 ($\mathrm{R}=\mathrm{COOMe}$) and dicyclohexylamine give 2-methylmercaptonicotinic acid dicyclohexylamide 19. By the action of the oxaziridine 1 the compound 19 is converted to 2-methylsulfoxynicotinic acid amide 20 (cleaveage of the amide group by ammonia from the decomposition of 1 and oxidation of the thioether group). The structures 19 and 20 are in accordance with spectral and microanalytical data. Thus, the NMR signals of the methyl group $\left({ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} \mathrm{ppm}\right.$ in DMSO-d d_{6}) are typical for methyl thioethers (19: 2.33/ 13.6) and sulfoxides (20: 3.15/37.5), resp. Probably, in analogy to the formation of $\mathbf{1 4}$ the sulfur is aminated and the sulfenamide group displaces the dicyclohexylamine, followed by a hydrolytic ring cleavage of the resulting (unstable) methylsulfenium intermediate. Thus, the oxygen is not transferred directly by the oxaziridine 1 .

Scheme 7

Unfortunately, all attempts of a selective oxidation of the sulfenamides and sulfenylureas described above gave no results of preparative value. Either unchanged starting material, the corresponding disulfides or desulfurization products (2-pyridones) were the only identified compounds.

Financial support by the Hoechst Schering AgrEvo GmbH (Frankfurt, Germany) is gratefully acknowledged. The author thanks Dr. H. Mildenberger and Dr. H. Stark, Hoechst Schering AgrEvo GmbH, for helpful discussions and Mrs. U. Pieper, Institut für Angewandte Chemie e.V. (Berlin), for her skilful assistance in the experiments.

Experimental

Analytical instruments used see ref. [5]. All new compounds gave elemental analyses in accordance with the calculated values.

2-Aminothioquinazoline-4-ones 6 and 4-Aminothiouraciles 9; general procedure 1 (details and analytical data see tables 2-5):
2.0 mmol of the 2-mercaptoquinazoline-4-one ($6, \mathrm{SH}$ instead of SNH_{2}) or the 4-mercaptouracile (9 , SH instead of SNH_{2}), dissolved in a minimum amount of DMF, are added without cooling to a stirred solution of the oxaziridine $\mathbf{1}$ in toluene [1]. After few seconds the yellow colour of the starting material disappears, and the title compounds begin to crystallize from the reaction mixture (9) or the reaction mixture is evaporated in vacuo and the remainder is crystallized by scratching or addition of heptane or ether (6).

For a quantitative determination, 0.5 mmol of the sulfenamide is dissolved in glacial acetic acid and treated with an excess of aqueous potassium iodide solution. The iodine liberated is titrated with thiosulfate solution. 100% purity requires 5.00 ml of 0.2 N thiosulfate solution. Recrystallized samples of the sulfenamides $\mathbf{6}$ and $\mathbf{9}$ show a purity of 96 101%. After titration the starting mercapto compound can be recovered by filtration. The iodometric titration does not give reproducable results with allylic derivatives as 6 .

Preparation of sulfenyl ureas ($7,10,12$ and 16); general procedure 2 (details and analytical data see tables 2-5)
5 mmol of the sulfenamide, 5 ml dried dioxane $(7,10)$ or toluene (12) and 5.1 mmol of the corresponding isocyanate are refluxed for $15 \mathrm{~min}(\mathbf{1 2})$ or one hour ($\mathbf{7}, \mathbf{1 0}$). The solvent is evaporated in vacuo. The remainder is collected or brought to crystallization by scratching with ether and recrystallized.

3-Allyl-2-benzoylaminothio-4-oxoquinazoline 8a (analytical data see tables 2-3)
0.3 g (2.1 mmol) benzoylchloride are added to a stirred and ice cooled solution of $0.47 \mathrm{~g}(2 \mathrm{mmol}) 6 \mathrm{a} \mathrm{in} 5 \mathrm{ml}$ dry pyridine. After one hour at $0^{\circ} \mathrm{C}$ and two hours at $20^{\circ} \mathrm{C}$ the reaction mixture is shaken with cold water and chloroform. The chloroform layer is washed with water, dried and evaporated. The remaining oil crystallizes on scratching with ethanol; $0.35 \mathrm{~g} 8 \mathrm{a}(52 \%)$, m.p. $168^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}(337.39)$.

2-Aminothio-3-methoxycarbonylpyridine 11a

$7.3 \mathrm{~g}(43 \mathrm{mmol}) 2$-mercaptonicotinic acid methylester 17 ($\mathrm{R}=$ COOMe) in a small amount of DMF and a solution of 64 mmol 1 in toluene are stirred. The temperature raises to $30^{\circ} \mathrm{C}$

Table 2 4-Oxoquinazolines 6, 7 and 8 (general procedures 1 and 2) and their mass spectra

${ }^{\text {a }}$) polymorphism.

Table $3{ }^{13} \mathrm{C}$ (first line) and ${ }^{1} \mathrm{H}$ (second line) NMR spectra of the compounds 6,7 and 8

Compd.	C2	C4	C4a	C5	C6	C7	C8	C8a	R
6 a	163.1	160.2	118.5	126.5	134.6	125.5	125.8	147.1	44.2/131.3/117.5 ${ }^{\text {a }}$)
	-	-	-	8.10 m	7.82m	7.45 m	7.60 m	-	$4.55 \mathrm{~m} / 5.90 \mathrm{~m} / 5.15 \mathrm{~m}$; SNH 4.32s
6b	162.9	160.4	118.6	126.4	134.5	125.5	125.7	147.0	42.2/29.7/19.5/13.4 ${ }^{\text {b }}$)
	-	-	-	8.06 m	7.81 m	7.44 m	7.64 m	-	$\begin{aligned} & 3.87 \mathrm{t} / 1.1-1.9 \mathrm{~m}, 4 \mathrm{H} / \\ & \left.0.93 \mathrm{t}^{\mathrm{b}}\right) ; \mathrm{SNH}, 4.06 \mathrm{~s} \end{aligned}$
6 c	163.5	160.5	119.3	126.6	134.2	125.6	125.9	147.4	134.8/129.4/129.1/
									$130.0{ }^{\text {c }}$);
	-	-	-	8.11 m	7.85 m	7.49 m	7.65 m	-	$7.4-7.9 \mathrm{~m}, 2 \mathrm{H} / 7.57 \mathrm{~m}$
6d	163.6	159.6	118.9	126.8	135.2	125.8	126.0	147.7	136.2/136.2/128.7/
									$130.1^{\text {c }}$) $\mathrm{CH}_{3} 17.0$
	-	-	-	8.14 m	7.88 m	7.38 m	7.69 m	-	$7.28 \mathrm{~d}, 2 \mathrm{H} / 7.50 \mathrm{t}, 1 \mathrm{H}$;
									$\begin{aligned} & \mathrm{CH}_{3} 2.04 \mathrm{~s} \\ & \mathrm{SNH}_{2} 4.20 \mathrm{~s} \end{aligned}$
7a	157.9	160.2	117.9	126.5	134.8	126.0	126.0	146.8	44.6/131.1/118.19);
									$\begin{aligned} & 154.5 / 139.2 / 118.8 / \\ & \left.128.7 / 122.5^{\mathrm{d}}\right) \end{aligned}$
7c	158.2	160.5	118.8	126.6	134.9	126.1	126.1	147.2	R:133.8/129.3/129.6/
									$130.4{ }^{\text {c }}$);
									154.4/139.2/118.7/
									128.7/122.4 ${ }^{\text {d }}$)
8a	156.5	160.7	118.7	126.5	134.8	126.1	126.1	146.7	44.8/131.1/117.9 ${ }^{4}$);
									168.8/133.5/128.1/
									128.5/132.2 ${ }^{\text {d }}$)
									$4.69 \mathrm{~d} / 5.8-6.2 \mathrm{~m} / 5.1-$
	-	-	-	7.4 m			8.2 m	-	$\left.5.4 \mathrm{~m}^{\mathrm{s}}\right) ; 7.2-7.9 \mathrm{~m}, 5 \mathrm{H}$;
									NH 10.2s

$\left.\left.{ }^{\text {a) }} \mathrm{NCH}_{2} / \mathrm{CH}=1=\mathrm{CH}_{2} ;{ }^{\text {b }}\right) \mathrm{NCH}_{2} / \mathrm{CH}_{2} / \mathrm{CH}_{2} / \mathrm{CH}_{3} ;{ }^{\text {c }}\right) \mathrm{Cl} / \mathrm{C} 2,6 / \mathrm{C} 3,5 / \mathrm{C} 4 ;{ }^{\text {d) }} \mathrm{CO} / \mathrm{C} 1 / \mathrm{C} 2,6 / \mathrm{C} 3,5 / \mathrm{C} 4$.
and the yellow color of the starting material disappears. After one hour some precipitated bis-(3-methoxycarbonylpyrid-2-yl)-disulfide ($1.08 \mathrm{~g}, 15 \%$; m.p. 191-193 ${ }^{\circ} \mathrm{C}$ after recrystallisation from ethanol) is removed by suction. The filtrate is evaporated in vacuo. The residue is treated with ether and yields 11a; 4.12 g (52%); m.p. $137-138^{\circ} \mathrm{C}$ (from methanol); $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (184.22). - ${ }^{1} \mathrm{H}$ NMR: δ OMe 3.81s (3H), H4 $8.11 \mathrm{~d}(1 \mathrm{H})$, H5 7.16t (1H), H6 8.65d (1H). $-{ }^{13} \mathrm{C}$ NMR: $\delta \mathrm{C} 2$ 168.8, С3 120.0, C4 138.4, C5 118.8, C6 152.5, CO 165.0,

OMe 52.3. - MS (70 eV): 184 (M+, 70%), 78 (53%), 153 (36%), 48 (28%), $50(25 \%), 47(23 \%)$.

2-Aminothio-6-methoxy-3-nitropyridine 11b

$1.56 \mathrm{~g}(8.4 \mathrm{mmol}) 2$-mercapto-6-methoxy-3-nitropyridine (m.p. $74-75^{\circ} \mathrm{C}$) and a solution of 13 mmol 1 in toluene are stirred. After few seconds the starting material dissolves and 11 b precipitates, $1.0 \mathrm{~g}, 59 \%$; m.p. $192^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (202.21). $-{ }^{1} \mathrm{H}$ NMR: δ OMe 3.34s (3H), H4 8.11 AB ($J=8.8$

Table 4 4-Aminothiouraciles 9 and 4-phenylaminocarbonylaminothiouraciles $\mathbf{1 0}$ (general procedures 1 and 2) and their mass spectra

Compd.	formula	mol. wt.	yield (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right) /$ solvent	mass spectra (m / e [relative intensity])
9a	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{OS}$	143.17	98	$160 / \mathrm{EtOH}$	$\begin{aligned} & 143(7) ; 58(100), \\ & 45(66), 128(60), 57(56), 52(42) \end{aligned}$
9b	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$	157.20	87	196-197/EtOH	$\begin{aligned} & 157(100) ; 140(76), \\ & 141(60), 54(57), 81(56), 82(35) \end{aligned}$
9c	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}$	171.23	95	191/EtOH	$\begin{aligned} & 171(45) ; 153(100), \\ & 155(48), 154(34), 86(15), 127(13) \end{aligned}$
9d	$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$	185.26	93	181/EtOH	$\begin{aligned} & 185(45) ; 153(100), \\ & 169(70), 185(45), 167(31), 113(29) \end{aligned}$
9 e	$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$	185.26	82	193-194/EtOH	$\begin{aligned} & 185(43) ; 153(100), \\ & 167(82), 169(43), 168(23), 170(20) \end{aligned}$
9 f	$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$	199.28	71	172/EtOH	$\begin{aligned} & 53(100) ; 183(43), \\ & 113(31), 199(24), 81(24), 86(19) \end{aligned}$
9g	$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$	213.31	93	167-168/EtOH	$\begin{aligned} & 213(47), 153(100), \\ & 197(52), 113(29), 141(23), 165(21) \end{aligned}$
9h	$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$	227.34	86	172/EtOH	$\begin{aligned} & 227(28) ; 153(100), \\ & 211(45), 113(36), 179(35), 141(26) \end{aligned}$
9 i	$\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$	255.39	81	182/EtOH	$\begin{aligned} & 55(18) ; 153(100), \\ & 207(99), 239(50), 81(46), 141 \text { (41) } \end{aligned}$
10b	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	276.33	56	198/DMSO/ $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 276(0.2) ; 93(100), \\ & 119(43), 142(32), 91(30), 222(7) \end{aligned}$
10c	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	290.35	66	190-192/DMF/EtOH/H2	$\begin{aligned} & 290(0.4) ; 93(100), \\ & 119(77), 64(56), 155(48), 91(47) \end{aligned}$

Table $5{ }^{13} \mathrm{C}$ - (first line) and ${ }^{1} \mathrm{H}$ - (second line) NMR spectra of the compounds 9 and 10

Comp.	C2	$\mathrm{C} 4\left(\mathrm{SNH}_{2}\right)$	C5	C6 (H6)	R
9a	149.8	190.3	111.3	140.5	-
	-	4.27s	$6.57{ }^{\text {a }}$)	$7.74{ }^{\text {a }}$)	
9b	155.0	182.8	116.1	139.9	12.3
	-	3.7br.s	-	7.36 s	1.85 s
9c	$155{ }^{\text {b }}$)	$182{ }^{\text {b }}$)	117.5	146.6	18.4/11.8
		3.44	-	7.37 s	$2.20 \mathrm{q}, 1.04 \mathrm{t}$
9d	154.2	182.6	111.5	140.2	28.0/21.4/13.3
	-	3.8br.s	-	7.41 s	$2.18 \mathrm{t} / 1.45 \mathrm{sext} / 0.84 \mathrm{t}$
9 e	154.0	182.0	118.2	138.1	25.2/22.1
	-	3.8br.s	-	7.43 s	$2.59 \mathrm{sept} / 1.09 \mathrm{~d}$
9f	154.2	182.6	111.7	140.1	30.5/25.7/21.6/13.5
	-	3.80s	-	7.39 s	$2.23 \mathrm{t} / 1.1-1.6 \mathrm{~m}, 4 \mathrm{H}, 0.90 \mathrm{t}$
9g	$154{ }^{\text {b }}$)	$182{ }^{\text {b }}$)	$112{ }^{\text {b }}$)	140.2	30.7/26.0/25.7/20.8/13.8
	-	3.8br.s	-	7.33 s	2.20t/1.3br.m, $6 \mathrm{H} / 0.86 \mathrm{t}$
9h	154.2	182.6	111.7	140.2	30.8/28.3/28.1/26.0/21.9/13.8
	-	3.8br.s	-	7.32s	$2.19 \mathrm{t} / 1.3 \mathrm{br} . \mathrm{m}, 8 \mathrm{H} / 0.85 \mathrm{t}$
10b	154.1*	178.1	107.0	141.7	11.5; 154.4*/139.3/118.4/128.7/122.3 ${ }^{\text {c }}$)
	-	7.9/9.1	-	7.43 s	1.94s; 7.1-7.6m
10c	154.1*	177.8	113.2	140.8	19.2/13.0; 154.4*/139.3/118.4/128.6/122.2 ${ }^{\text {c }}$)
	-	7.9/9.1	-	7.39 s	2.28q/1.09t; 6.9-7.5br.m
10f	153.9*	177.8	111.8	141.4	30.6/25.7/21.6/13.5; 154.3*/139.3/118.3/128.7/122.2 ${ }^{\text {c }}$)
	-	7.8/9.0	-	7.44s	2.30t/1.4br.m, $/ 0.90 \mathrm{t}$
10g	153.9*	177.7	111.8	141.4	30.7/28.1/25.9/21.7/13.8; $154.3 * / 139.2 / 118.3 / 128.7 / 122.2{ }^{\text {c) }}$)
	-	7.8/9.1	-	7.43 s	2.28U/1.2-1.6m, $6 \mathrm{H} / 0.86 \mathrm{t}$;

* assignments not clear; ${ }^{\text {a }}$) AB -system, $J_{\mathrm{AB}}=7 \mathrm{~Hz}$; ${ }^{\text {b }}$) very low solubility/intensity; ${ }^{\text {c }}$) $\mathrm{CO} / \mathrm{NHPh} \mathrm{C} 1 / \mathrm{C} 2,6 / \mathrm{C} 3,5 / \mathrm{C} 4$.
$\mathrm{Hz}, 2 \mathrm{H}$) H5 6.73, $\mathrm{NH}_{2} 4.1 \mathrm{br} . \mathrm{s}(2 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR: $\delta \mathrm{C} 2$ 167.6, C3 133.9, C4 136.9, C5 106.8, C6 165.1, OMe 55.0. - MS ($70 \mathrm{eV}, m / e$): 201 (M, 56\%), 108 (100%), 137 (90%), 80 (83%), 64 (65%), 96 (45%), 48 (50%), 136 (36%).

2-Aminothiopyridine-1-oxide 11c

0.77 g (6.1 mmol) 2-mercapto-pyridine-1-oxide (precipitated freshly from an aqueous solution of the sodium salt by 2 N
sulfuric acid) and a solution of 19 mmol 1 in toluene are stirred over night. Precipitated 11c is separated by suction and washed with ether; $0.78 \mathrm{~g}, 90 \%$; m.p. $163{ }^{\circ} \mathrm{C}$ (DMF/toluene); $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OS}(142.19) .-{ }^{1} \mathrm{H}$ NMR: $\delta \mathrm{H} 37.52 \mathrm{dd}, \mathrm{H} 47.42 \mathrm{dt}$, H5 7.14dt, H6 8.19dd; $\mathrm{NH}_{2} 4.00 \mathrm{~s}(2 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR: $\delta \mathrm{C} 2$ 157.9, C3 125.4, C4 120.5, C5 120.1, C6 137.8. - MS (70 eV, $\mathrm{m} / \mathrm{e}): 142\left(\mathrm{M}^{+}, 50 \%\right), 78(100 \%), 125(50 \%), 79(53 \%), 51$ (30\%), 98 (24\%), 69 (18\%).

3-Methoxycarbonyl-2-phenylaminocarbonylaminothiopyridine 12a

As described in the general procedure $2,4.3 \mathrm{~g}(23.4 \mathrm{mmol})$ 11 a and 2.54 ml (23.4 mmol) phenylisocyanate give 12a; 6.2 $\mathrm{g}(87 \%)$; m.p. $210-212^{\circ} \mathrm{C}$ (DMF/toluene); $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (303.33). $-{ }^{1} \mathrm{H}$ NMR: δ OMe $3.86 \mathrm{~s}(3 \mathrm{H}), \mathrm{H} 48.20 \mathrm{~d}(1 \mathrm{H}), \mathrm{H} 5$ 7.2 (superposed by Ph), H6 $8.61 \mathrm{~d}(1 \mathrm{H})$; $\mathrm{Ph} 6.8-7.6 \mathrm{~m}(6 \mathrm{H}$ including H5). $-{ }^{13} \mathrm{C}$ NMR: δ NHPh C1 139.6, C2/6 128.6, C3/5 118.3, C4 121.9; CONH 155.3; MeO 52.5, COOMe 164.2; C2 165.2, C3 120.4, C4 138.6, C5 119.9, C6 152.8. MS (70 eV, m/e): 303 ($\mathrm{M}^{+}, 9 \%$), 152 (45\%), 211 (43\%), 93 (39\%).

2-(4-Chlorphenylaminocarbonylaminothio)-6-methoxy-2nitropyridine 12b
As described in the general procedure $2,0.2 \mathrm{~g}(1 \mathrm{mmol}) \mathbf{1 1 b}$ and $0.15 \mathrm{~g}(1 \mathrm{mmol})$ 4-chlor-phenylisocyanate give $\mathbf{1 2 b} ; 0.3$ g (85%); m.p. $245-255^{\circ} \mathrm{C}$ (DMF/toluene); $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{ClO}_{4} \mathrm{~S}$ (354.78). - ${ }^{1} \mathrm{H}$ NMR: δ OMe $3.36 \mathrm{~s}(3 \mathrm{H}), \mathrm{H} 48.13 \mathrm{AB}(J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$) H5 6.77, 4-Cl- $\mathrm{C}_{6} \mathrm{H}_{4} 7.30 / 7.47$ (AB system, 4 H). ${ }^{13} \mathrm{C}$ NMR: δ C2/C6 165.3/162.1, C3 134.4, C4 137.2 C5 108.2; MeO 54.7; CO 155.6; 4-Cl-C $\mathrm{C}_{6} \mathrm{H}_{4}$ C1 138.6, C2/C6 120.4, C3/C5 128.8, C4 126.2. - MS (70 eV, m/e): 354/356 $\left(\mathrm{M}^{+}, 22 \% / 8 \%\right), 137$ (100%), 99 (80%), 127 (74%), 126 (54\%), 64 (52%), 111 (47%), 185 (39\%), 96 (39\%), 108 (36\%).

2-(4-Chlorphenylaminocarbonylaminothio)pyridine-1-oxide 12c

$0.28 \mathrm{~g}(2 \mathrm{mmol}) 11 \mathrm{c}$ and $0.3 \mathrm{~g}(2 \mathrm{mmol}) 4$-chlor-phenylisocyanate give 12c; 0.55 g (93\%); m.p. $213{ }^{\circ} \mathrm{C}$ (DMF/ toluene); $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{ClO}_{2} \mathrm{~S}$ (295.75). - ${ }^{1} \mathrm{H}$ NMR: $\delta \mathrm{H} 37.48 \mathrm{~m}$ $(1 \mathrm{H}), \mathrm{H} 4 / \mathrm{H} 57.18-7.35 \mathrm{~m}(2 \mathrm{H})$, H68.31dd (1 H) ; 4-Cl- $\mathrm{C}_{6} \mathrm{H}_{4}$ 7.32/7.50 (AB system, 4 H$)$, NH 9.31s/8.04s. - ${ }^{13} \mathrm{C}$ NMR: δ C2 153.5, C3 126.5, C4 121.7, C5 119.8, C6 138.0; CO 154.9; $4-\mathrm{Cl}_{6} \mathrm{H}_{4} \mathrm{C} 1138.5, \mathrm{C} 2 / \mathrm{C} 6120.5, \mathrm{C} 3 / \mathrm{C} 5128.7$, C 4126.2. - MS ($70 \mathrm{eV}, m / e): 295\left(\mathrm{M}^{+}, 0.5 \%\right), 127(100 \%), 90(60 \%)$, 78 (45%), $153(40 \%), 125(25 \%), 154(15 \%)$.

3-Oxo-1,2-thiazalo[4,5-b]pyridine (14)

1.82 g (10 mmol) 2-dimethyl-aminocarbonyl-2-mercaptopyridine $13,15 \mathrm{mmol} 1$ in toluene, 25 g ice and 5 ml 2 N NaOH are shaken in separatory funnel for 20 min . The aqueous phase is acidified with concentrated hydrochloric acid, the precipitated product is washed with water.; $1.00 \mathrm{~g}(66 \%) \mathbf{1 4}$, m.p. $246-246.5^{\circ} \mathrm{C}$ (DMF/EtOH 1:1); $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{OS}$ (152.18). $-{ }^{1} \mathrm{H}$ NMR: δ Py H4 8.32m, H5 7.51m, H6 8.82m; NH 11.9br.s. ${ }^{13}$ C NMR: δ Py C2 162.9, C3 118.4, C4 133.0, C5 120.2, C6 152.4; CO 167.7. - MS (70 eV, m/e): $152\left(\mathrm{M}^{+}, 100 \%\right), 97$ (40%), 78 (37%), 77 (22%), 70 (22%), 124 (13%).

Sodium salt of 2-aminothionicotinic acid tetrahydrate (15) A crystalline precititate from the alkaline reaction mixture of the preparation of 14 is isolated and recrystallized from EtOH ; $0.9 \mathrm{~g}(34 \%) 15, m . p .>360^{\circ} \mathrm{C}$. The acidified aqueous phase yields $0.4 \mathrm{~g}(26 \%) 14$. Warming of crude 15 with acetic acid for 1 min . gives 14 (68% yield); $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}$ (263.24). ${ }^{1} \mathrm{H}$ NMR: δ Py H4 $8.08 \mathrm{~m}, \mathrm{H} 57.19 \mathrm{~m}$, H6 8.51m. - ${ }^{13} \mathrm{C}$ NMR: δ Py C2 171.0*, C3 123.2, C4 132.5, C5 117.7, C6 149.1;

CO 171.6*. - MS (70 eV, m/e): 152 (100%), 64 (75%), 48 (75%), 46 (60%), 51 (50%), 47 (50%), 76 (35%), 78 (30%), $70(30 \%)$.

3-Oxo-2-phenylaminocarbonyl-1,2-thiazolo[4,5-b]pyridine (16)
 phenylisocyanate are refluxed for one hour. After cooling the separated crystals are collected; $550 \mathrm{mg}(89 \%)$ 16, m.p. $165-$ $167{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(271.31)$. - ${ }^{l} \mathrm{H}$ NMR: δ Py H4 7.84 m , H5 7.61m, H6 8.97 m ; NH 10.8 br .s; Ph H2/H6 7.59m (2H), H3/H5 7.41m (2H), H4 7.19m (1H). - ${ }^{13} \mathrm{C}$ NMR: δ Py C2 161.4, C3 118.4, C4 136.0, C5 124.9, C6 152.7, CO 163.7; CONHPh CO 156.2, Ph C1 136.7, C2/C6 120.3, C3/C5 129.3, C4 122.0. - MS (70 eV, m/e): $271\left(\mathrm{M}^{+}, 6 \%\right), 152$ (100%), $119(40 \%), 91(20 \%), 64(14 \%), 98(10 \%), 78(10 \%)$.

3-Benzylaminocarbonyl-2-(2-oxocyclohexylthio)pyridine (18a)

$0.57 \mathrm{~g}(2.34 \mathrm{mmol}) \mathbf{1 7 a}$ and 3.5 mmol 1 in toluene (see general procedure 1) give after scratching with petroleum ether 0.65 g(82\%) 18a, m.p. $120-122{ }^{\circ} \mathrm{C}$, after recrystallization from EtOH 139-140 ${ }^{\circ} \mathrm{C}$; $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (340.44). - ${ }^{1} \mathrm{H}$ NMR: δ Py H4 7.84m, H5 7.19m, H6 8.46m; NH 9.08t; $\mathrm{CH}_{2} 4.45 \mathrm{~d}(2 \mathrm{H})$ Ph 7.2-7.4m (5H); cyclohex SCH 4.72m, H3-H6 1.2-2.4m (8H). - ${ }^{13} \mathrm{C}$ NMR: δ Py C2 156.1, C3 118.9, C4 135.3, C5 126.7, $\mathrm{C} 6149.7, \mathrm{CONH} 166.0 ; \mathrm{CH}_{2} \mathrm{Ph} \mathrm{CH} 242.5, \mathrm{PhCl} 139.0$, C2/C6 128.2, C3/C5 129.2, C4 129.6; cyclohex C1 52.4, C2 205.9, C3 41.2, C4 26.8, C5 24.5, C6 33.9. - MS (70 eV, $m / e): 340\left(\mathrm{M}^{+}, 18 \%\right), 323$ (100%), 91 (32%), 324 (23%), $106(18 \%), 197(14 \%), 213(13 \%)$.
3-Hydroxy-2-(2-hydroxycyclohexenylthio)-pyridine (18b)
$0.63 \mathrm{~g}(5 \mathrm{mmol}) \mathbf{1 7 b}, 15 \mathrm{~g}$ of crushed ice, $2,5 \mathrm{ml}(5 \mathrm{mmol}) 2 \mathrm{~N}$ NaOH and 7.5 mmol 1 in toluene (see general procedure 1) are shaken for 10 min . The aqueous layer is separated, acidified with concentrated HCl , evaporated and dried under reduced pressure. The residue is extracted with ethanol, filtered from NaCl and treated with ether giving $0.7 \mathrm{~g}(63 \%) \mathbf{1 8 b}$, m.p. 190$195{ }^{\circ} \mathrm{C}$ (from toluene/DMF); $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ (223.30). $-{ }^{1} \mathrm{H}$ NMR: δ Py H4 7.92m, H5 7.72m, H6 $8.49 \mathrm{~m} ; \mathrm{OH} 12.9 ; \mathrm{CH}_{2}$ $2.03 \mathrm{~m}(4 \mathrm{H}) / 1.59 \mathrm{~m}(4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR: δ Py C2 152.3, C3 153.2, C4 104.0, C5 129.0, C6 143.3; cyclohex C1 50.7, C2 153.2, C3 38.8, C4 20.6, C5 19.7, C6 23.5. - MS (70 eV, $m / e): 223\left(\mathrm{M}^{+}, 30 \%\right), 206(60 \%), 162(30 \%), 128(30 \%), 127$ $(100 \%), 96(65 \%), 83(40 \%), 55(30 \%)$.

3-Dicyclohexylaminocarbonyl-2-methylthio-pyridine (19)

0.85 g (5 mmol) 2-mercaptonicotinic acid methylester 17 ($\mathrm{R}=$ COOMe) and $1.08 \mathrm{~g}(6 \mathrm{mmol})$ dicyclohexylamine are heated at $150^{\circ} \mathrm{C}$ for 10 min . The TLC indicates complete conversion. The product is washed with ether leaving $1.45 \mathrm{~g}(87 \%) 19$, m.p. 168-170 ${ }^{\circ} \mathrm{C}$ (from n-heptane); $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}$ (332.52). ${ }^{1} \mathrm{H}$ NMR: δ Py H4 8.05 m , H5 7.10 m , H6 $8.44 \mathrm{~m} ; \mathrm{CH}_{2} 1.0-$ $2.1 \mathrm{~m}(20 \mathrm{H}), \mathrm{CH} 3.08 \mathrm{t}(2 \mathrm{H}) ; \mathrm{SCH}_{3} 2.33 \mathrm{~s}(3 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR: δ Py C2 159.5, C3 132.0, C4 137.0, C5 117.9, C6 148.5; CO 167.9; SCH_{3} 13.6; cyclohex C1 51.8, C2/C6 29.0/24.1, C3/ C5 24.1/24.1, C4 24.9. - MS (70 eV, m / e): $133(100 \%), 106$ (14\%), 78 (78\%), 77 (68 \%).

3-Aminocarbonyl-2-methylsulfinyl-pyridine (20)

$1.45 \mathrm{~g}(4.36 \mathrm{mmol}) 19$ in 4 ml DMF and 7 mmol 1 in toluene (see general procedure 1) give after stirring overnight 0.5 g (62\%) 20, m.p. $164-165^{\circ} \mathrm{C}$ (from EtOH); $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (184.22). - ${ }^{1}$ H NMR: δ Py H4 $8.34 \mathrm{~m}, \mathrm{H} 57.76 \mathrm{~m}$, H6 8.74 m ; $\mathrm{NH}_{2} 5.61 \mathrm{~s} ; \mathrm{CH}_{3} 3.15 \mathrm{~s}$. - ${ }^{13} \mathrm{C}$ NMR: δ Py C2 152.4, C3 132.8, C4 140.3, C5 127.8, C6 151.5, CO 166.3; $\mathrm{CH}_{3} 37.5$ - - MS ($70 \mathrm{eV}, m / e$): $184\left(\mathrm{M}^{+}, 10 \%\right), 183(20 \%), 169(100 \%), 152$ (65\%), 151 (75%), 138 (85%), 136 (30%), 124 (75%), 123 (50%), 122 (45%), 79 (85%).

References

[1] S. Andreae, E. Schmitz, Synthesis 1991, 327
[2] T. Zincke, K. Eismeyer, Chem. Ber. 51 (1918) 751
[3] W. D. Busse, E. Krauthausen, M. Mardin, DE OS 3118126 und 3118127/7.5.1981/2.12.1982; Chem. Abstr. 98 (1983), P 143447k and P 143446j
[4] S. Andreae, E. Schmitz, J. Prakt. Chem. 329 (1987) 1008
[5] S. Andreae, E. Schmitz, B. Schulz, Liebigs Ann. Chem. 1994, 175

Address for correspondence:
Dr. habil. Siegfried Andreae
Institut für Angewandte Chemie Adlershof e.V.
Rudower Chaussee 5
D-12489 Berlin

[^0]: ${ }^{\text {a }}$) Experimental conditions as described in the exp. part for the amination procedures, e.g. general procedure 1.
 ${ }^{\text {b }}$) The disulfides were identical with authentic samples (tlc, m.p.).

